
Virtual Texturing in Software and Hardware

SIGGRAPH 2012 Courses

Los Angeles, August 5-9 2012

Juraj Obert
Advanced Micro Devices

J.M.P. van Waveren
ID Software

Graham Sellers
Advanced Micro Devices

Abstract

The objective of this course is to introduce Partially Resident Textures (PRTs), a new
GPU feature for virtual texturing, and contrast them with traditional, software-based, meth-
ods used for virtual texturing. PRTs are currently available in the Southern Islands (Radeon
HD 7xxx) family of graphics processors.

Software-based virtual texturing methods have been used in computer games since 2007.
The technology was popularized by John Carmack (ID Software) and ID Software’s im-
plementation of virtual texturing is termed Megatexture. The first title featuring virtual
texturing was Enemy Territory: Quake Wars (Splash Damage), followed by other titles such
as Brink (Splash Damage) or RAGE (ID Software).

The basic idea of virtual texturing is simple — instead of maintaining a separate texture
for each object rendered on the screen, all textures are stored in a massive ”virtual texture”.
The size of the virtual texture is in the order of billions of texels and each object is assigned
unique virtual texture coordinates from the virtual texture. When used in a shader, the
virtual texture coordinates are translated into physical texture coordinates, which are used
to access the physical texture that contains the working set of all required tiles.

Existing approaches implement the entire virtual texturing algorithm in software. The
software is required to update the page table (yet another texture used for translating virtual
texture coordinates into physical ones), perform address translation (by dependent texture
lookups in a shader) and deal with hardware differences when it comes to supported texture
types, formats and filtering modes. The first part of the course will outline this process and
discuss difficulties encountered when deploying this technology in RAGE.

Partially Resident Textures are a new hardware technology that provides direct hardware
support for virtual texturing. PRTs eliminate the need for maintaining the page table (the
hardware does it) and address translation (the hardware does it) as well as provide support
for all texture types/formats and filtering modes (again the hardware does it all). The second
part of the course will describe the hardware architecture as it relates to PRTs.

The third part of the course will introduce the new AMD sparse texture OpenGL exten-
sion that exposes PRTs to software applications. We will present several PRT use cases, a
tech demo and discuss strengths and weaknesses of this technology. The course will conclude
with a discussion of the limitations present in today’s PRT hardware and future plans for
PRT development.

About the Authors

Juraj Obert
Advanced Micro Devices
juraj.obert@amd.com

Juraj Obert is a software engineer in the OpenGL driver team at AMD, where he focuses
on performance tuning, feature development and software architecture. He has over 10
years of experience in graphics programming and holds a PhD in Computer Science from
the University of Central Florida. His research work was previously published at both
SIGGRAPH and Eurographics conferences.

J.M.P. van Waveren
ID Software
mrelusive@idsoftware.com

J.M.P. van Waveren studied computer science at Delft University of Technology in the
Netherlands. He has been developing technology for computer games for over a decade
and has been involved in the research for, and development of various triple-A game titles
such as: Quake III Arena, Return to Castle Wolfenstein, DOOM III and RAGE.

Graham Sellers
Advanced Micro Devices
graham.sellers@amd.com

Graham Sellers is the manager of the OpenGL driver team at AMD. He represents AMD at
the OpenGL ARB and Khronos Group and is responsible for the design and implementation
of new features in AMD’s OpenGL implementation, including extensions and new versions
of the OpenGL API. He is the author of or a contributor to over 20 OpenGL extensions,
many of which are now part of the core API specification. He is listed as a contributor to
OpenGL from version 3.2 onwards. He is also a co-author of the OpenGL SuperBible and
the upcoming edition of the OpenGL Programming Guide. He holds a Masters’ degree in
Engineering from the University of Southampton, UK.

2

Course Outline

10 minutes: Introduction
Juraj Obert

1. Introduction to the course and its goals, course overview and introducing all speakers

2. Introduction to virtual texturing

25 minutes: Challenges of Software Virtual Texturing
J.M.P. van Waveren

1. Virtual texturing in RAGE

2. Different virtual to physical translations

3. Texture filtering

4. Feedback rendering

25–30 minutes: Hardware Virtual Texturing — Partially Resident Textures
Juraj Obert

1. Hardware architecture

2. Driver support (OpenGL, DX)

3. OpenGL AMD sparse texture extension (Part 1)

20 minutes: Demo & Future development
Graham Sellers

1. OpenGL AMD sparse texture extension (Part 2)

2. Tech demo

3. Future development

5–10 minutes: Conclusion and Discussion
Juraj Obert, J.M.P. van Waveren, Graham Sellers

3

Contents

1 Introduction 5
1.1 Virtual Texturing in Software . 5

1.1.1 Virtual Textures . 5
1.1.2 Texture Coordinates . 6
1.1.3 Rendering . 6

1.2 Virtual Texturing in Hardware . 6
1.2.1 Partially Resident Textures . 7

2 Challenges in Software Virtual Texturing 9
2.1 Address Translation . 10
2.2 Texture Filtering . 13
2.3 Feedback Rendering . 15

3 Hardware Virtual Texturing — Partially Resident Textures 17
3.1 Virtual Memory . 17
3.2 Page/Tile Residency Information . 22

4 PRT Use Cases & Future Development 23
4.1 Very Large Texture Arrays . 23
4.2 Incomplete Mip-map Chains . 24
4.3 Truly Sparse Textures . 25
4.4 Current Limitations and Thoughts on the Future 25

A Code Samples 27

4

Chapter 1

Introduction

These course notes describe software and hardware virtual texturing methods available to
graphics developers in early 2012. This course is divided into 3 main parts — Virtual
Texturing in Software, Virtual Texturing in Hardware, and Demo/Future Development. The
objective of the course it to familiarize the reader with existing software techniques, introduce
(in detail) Partially Resident Textures (a new hardware technique for virtual texturing) and
provide a comparison between hardware and software techniques. At the end of the course,
the reader should have enough knowledge to understand the strengths and weaknesses of all
approaches.

1.1 Virtual Texturing in Software

1.1.1 Virtual Textures

Virtual texturing refers to a texturing technique in which multiple object textures are stored
in one massive texture called the virtual texture. The size of the virtual texture generally
exceeds the available storage space1 in modern GPUs (RAGE used virtual textures that
contain 128k × 128k texels). When rendering using a virtual texture, only parts of it are
made resident on the GPU and accessed from shaders.

For the purpose of this course, the regions of the texture resident in GPU memory at any
given time are termed the working set. In order to allow applications to selectively upload
texture regions to the GPU, the virtual texture is subdivided into virtual tiles (pages). The
working set is the set of tiles resident in the GPU memory and it always is a subset of the
set of all tiles in the entire virtual texture.

1The terms GPU memory and storage space will be used interchangeably throughout this course. Both
refer to the memory the GPU is able to access and render from. For high-performance texturing purposes,
local GPU memory is used almost exclusively by most applications.

5

1.1.2 Texture Coordinates

Surfaces of objects referencing the virtual texture are parameterized using virtual texture
coordinates. Virtual texture coordinates refer to texels in the virtual texture. At rendering
time, virtual texture coordinates are translated to physical texture coordinates which refer to
texels in the working set (i.e. the virtual tiles that are resident in the GPU memory at the
time the shader is invoked). In GPU terms, the working set is stored in the GPU memory
as a physical texture. The physical texture is smaller than the virtual one and serves as a
container for tiles that need to be accessible by the current draw call.

Since the texture coordinate space of the virtual texture is different from the texture
coordinate space of the physical texture, a mapping must exist between virtual and physical
texture coordinates. This mapping is stored in another texture termed the page table and the
conversion of virtual texture coordinates to physical texture coordinates is termed virtual-
to-physical address translation.

1.1.3 Rendering

When rendering with virtual textures, the address translation is typically performed inside
a shader by a lookup into the page table texture. The input to the lookup is a set of virtual
texture coordinates and the result of the lookup is a set of physical texture coordinates.
Once obtained, the physical textures coordinates are used to fetch texture data from the
physical texture.

The entire pipeline is depicted in Figure 1.1. Notice that the rendering pass is preceded
by a feedback pass that determines which texture pages are required to be resident for the
next frame. The feedback pass is traditionally implemented on the GPU and requires a
readback operation that transfers the IDs of required pages to the CPU. In the analysis
pass, the application determines which pages need to be uploaded and which are already
resident based on what it knows about the last rendered frame. The non-resident pages that
are required for the next frame are then uploaded to the GPU and the page table is updated.
Finally, the frame is rendered using the virtual texture.

1.2 Virtual Texturing in Hardware

While sounding fairly easy in theory, implementing virtual texturing in software comes with
a great deal of issues. The issues encountered when developing RAGE will be described in
detail in Chapter 2. For now, let us mention some just some of them:

• How to deal with different texture filtering modes across virtual tiles? (nearest, linear,
aniso, etc.)

• How to deal with mipmapped textures?

6

Application GPU

glDraw(…)

glTexSubImage2D(…)

Feedback
render

Page table
update

glReadPixels(…)

glTexSubImage2D(…)

glTexSubImage2D(…)

glTexSubImage2D(…)

glTexSubImage2D(…)

…

glDraw(…)

Scene
render

Feedback
analyze

Figure 1.1: Virtual Texturing pipeline.

• How to deal with different texture formats?

• How to deal with special texture types? (such as cubemaps)

• How to deal with multiple platforms?

While almost all of these issues can be resolved on the software side to a quite high level
of satisfaction, dealing with all of them requires a non-negligible amount of effort and should
not be required on modern GPUs. We will discuss these issues in detail in the next chapter.

1.2.1 Partially Resident Textures

In order to diminish the amount effort game developers need to put into the software imple-
mentation of virtual texturing, independent hardware vendors are now moving toward sup-
porting virtual texturing directly in hardware. AMD’s Partially Resident Textures (PRTs)
represent the first implementation of virtual texturing directly in hardware.

7

Compared to existing implementations of virtual texturing in software, PRTs provide
several advantages, among which are:

• Support for all texture types, formats and filtering modes

• Elimination of dependent texture fetches during rendering

• Support for mipmapped textures (all types)

• Access to tile residency information directly from shaders

• Support for massive texture size

In Chapter 3, we will describe the hardware support for PRTs as it exists in the Southern
Islands family of AMD GPUs (Radeon HD 7xxx Series). We will then discuss how the PRT
functionality is exposed to developers (OpenGL AMD sparse texture extension) and provide
examples in the form of screenshots and sample source code.

The rest of this document is organized as follows. In Chapter 2, we describe the imple-
mentation of software virtual texture as used in RAGE. We discuss the main challenges en-
countered when working with software virtual textures. In Chapter 3, we introduce Partially
Resident Textures and give an overview of the hardware architecture that supports them.
We discuss how PRTs eliminate many of problems inherent to software virtual textures.
Finally, in Chapter 4, we propose several PRT use cases, describe the AMD sparse texture
OpenGL extension and provide outlook on future hardware development.

8

Chapter 2

Challenges in Software Virtual
Texturing

Modern simulations increasingly require the display of very large, uniquely textured worlds
at interactive rates. In large outdoor environments and also high detail indoor environments,
like those displayed in the computer game RAGE (see Figure 2.1), the unique texture detail
requires significant storage and bandwidth. Virtual textures reduce the cost of unique texture
data by providing a sparse representation which does not require all of the data to be present
for rendering while leaving the majority of the texture data in highly compressed form on
secondary storage.

Figure 2.1: Virtual texture pages in RAGE.

9

Virtual textures not only provide for a reduction of memory requirements but also im-
proved rendering performance through a reduction in both graphics driver and GPU state
changes because many surfaces can use a single virtual texture without the need for per sur-
face texture selection. Several practical examples are discussed to emphasize the challenges of
implementing virtual textures in software and viable solutions are presented. These include
solutions for address translation, texture filtering, compression, caching, and streaming.

2.1 Address Translation

A virtual texture is divided into small pages that are loaded into a pool of resident physical
pages as required for rendering. These small pages are square blocks of texels, typically on
the order of 128 × 128. The pool with physical pages is a fully resident texture that is
logically subdivided into such square blocks of texels. While a virtual texture can be very
large (say a million pages) and is never fully resident in video memory, the texture that
holds the pool of physical pages is fully resident but much smaller (typically only 4096 ×
4096 texels or 1024 pages). Virtual texture pages are mapped to physical texture pages, and
during rendering virtual addresses need to be translated to physical ones.

In its simplest form, the virtual to physical translation is equivalent to finding the de-
sired level of detail (LOD) by using the virtual texture address to walk the quad-tree that
represents the mip hierarchy of the currently resident texture pages. Every node in the
quad-tree provides a scale and bias that will convert a virtual address inside a virtual page
to a physical address inside a physical page. The scale is the ratio between the size of the
virtual mip level and the size of the physical texture. The bias is the offset to the physical
page in the physical texture, minus the scaled offset to the virtual page in the virtual mip
level. While walking the quad-tree to find the desired LOD at a given virtual address, either
the scale and bias for the desired LOD are found, or the quad-tree terminates early and the
scale and bias at the final node are used for the address translation. In the latter case, the
address translation falls back to a page from a coarser mip level because the texture page for
the desired finer mip level is not yet available in pool of physical pages. Figure 2.2 shows an
overview of the virtual to physical address translation and the calculation of the scale and
bias.

Instead of using a quad-tree data structure, the virtual to physical translation can be
implemented in various different ways. These different virtual to physical translations all
implement a trade between:

1. Cost of virtual to physical translation during rendering

2. Page table memory requirements

3. Cost of page table updates

10

Figure 2.2: Virtual-to-physical address translation in RAGE.

For instance, the quad-tree data structure with currently resident texture pages allows
for a minimal memory page table, but it has the worst case access latency because it requires
a dependent read for each finer level of detail accessed.

A straightforward approach to implementing the virtual to physical translation is looking
up the scale and bias in a mip-mapped FP32x4 texture with one texel per virtual page. In
effect this mip-mapped texture stores the complete quad-tree data structure with a node for
every virtual texture page whether it is resident or not. A regular lookup into this page table
texture allows the texture hardware to be used to compute the nearest texel of the nearest
mip level that corresponds to the virtual texture page for the desired LOD at a given virtual
address. The texture lookup is biased with the base-two logarithm of the page width to
account for the size difference between the virtual texture and the page table texture. The
scale and bias retrieved from this page table texture can be used directly to map a virtual
address to a physical one. A texel of this texture will store a scale and bias for a texture page
from a coarser mip if the desired finer mip is not yet available in the pool of physical pages.
Even though this results in one of the simplest implementations the page table tends to be
rather large (21.33 MB for a virtual texture with 1024 × 1024 virtual pages) and FP32x4
texture lookups may be costly on some hardware.

To reduce the memory requirements, the page table can be split into two textures. The
first texture is mip-mapped with one texel per virtual page. Once again a regular lookup
into this texture allows the texture hardware to be used to compute the nearest texel of
the nearest mip level that corresponds to the virtual texture page for the desired LOD at a

11

given virtual address. Instead of storing a scale and bias, each 2-byte texel of this texture
contains the (x,y) coordinates of the physical page to be used for the virtual page. A texel
of this texture will point to a physical page from a coarser mip if the desired finer mip is
not yet available. The second texture is a non-mip-mapped FP32x4 texture with one texel
per physical page. A texel from this texture contains the scale and bias (ST-scale, S-bias,
T-bias) necessary to map a virtual texture coordinate to a physical texture coordinate for
that page. This approach saves memory by storing the floating-point scale and bias in a
much smaller (typically 32 × 32) texture with one texel per physical page, while allowing
access to this texture at the cost of a fully resident much larger (typically 1024 × 1024)
texture with only two bytes per virtual page. This memory optimization costs the latency of
a dependent texture read, but it saves 8x the memory compared to storing the floating-point
scale and bias in a texture with one texel per virtual page.

Instead of storing a scale and bias in textures, the virtual to physical mapping can also
be calculated in a fragment program based on the coordinates and mip level of a physical
page. The coordinates and mip level of a physical page can be stored in a single mip-mapped
texture which avoids the latency of a dependent texture read to fetch a scale and bias. Here
also, a regular lookup into this texture allows the texture hardware to be used to compute
the nearest texel of the nearest mip level that corresponds to the virtual texture page for the
desired LOD at a given virtual address. The coordinates of the physical page retrieved from
this texture are used to calculate the offset to the top-left corner of the physical page in the
physical texture. To calculate the complete physical address, the offset within the virtual
page needs to be scaled and added to the top-left corner of the physical page. This offset
within the virtual page needs to be calculated for the correct mip level which is done by first
multiplying the virtual texture coordinates with the width in pages of the physical page’s
mip level (virtual pages wide / 2mip) and then applying the ’frac()’ function. The fraction
is scaled into the correct range before being added to the physical page offset. The physical
page coordinates and the mip level can be stored in an 8-bit per component RGBA texture.
It is also possible to store the physical page coordinates in the 5-bit components, and the
mip level in the 6 bit component of a 5:6:5: RGB texture. However, this limits the size of the
physical page texture and the number of mip levels of the virtual texture. On DirectX9 class
hardware there are also various differences in the way these texture components are made
available as floating-point values in a fragment program which significantly complicates the
calculation of the virtual to physical translation.

The virtual to physical translation using a mip-mapped page table texture is a lot faster
than using a quad-tree structure with a dependent read for each finer level of detail accessed.
However, compared to storing only the quad-tree, page table updates are much more expen-
sive when using a mip-mapped page table texture. Consider when the first page of a virtual
texture is mapped: the entire page table texture must be populated with a single texel value.
When the next finer page is mapped in, one quarter of the texels must be updated, and so
on. Fortunately large page table updates happen infrequently.

Instead of using a quad-tree page table or a page table texture, a hash table can be used

12

to provide a middle ground between access latency, memory footprint and compute. Only
resident texture pages are stored in the hash table. A virtual page is found in the hash
table with a hash key calculated from the mip level and (x,y) coordinates of the page. A
good hash key function in combination with a small hash table typically results in very few
collisions, allowing the lookup of most pages with a single memory access. The spatial index
of a page in the virtual texture quad-tree modulo the hash table size can be used as a hash
key. However, better results are achieved if the (x,y) coordinates of a virtual page are first
remapped within the mip level such that pages that are close to each other in the quad-tree
do not map to the same hash table entry. The hash table does not provide an automatic
mechanism to fall back to a texture page from a coarser mip if a desired finer mip is not yet
available in the pool of physical pages. Instead, when the desired page is not found in the
hash table, the hash key for the next coarser page will have to be calculated in an attempt to
fetch the next coarser page from the hash table. If the next coarser page is also not resident
this process will have to be repeated until a valid page is found. On average, when most
desired pages are resident, the hash table access latency is much better than a quad-tree
page table. However, in the worst case, when few or no pages are resident, multiple hash
keys have to be calculated and multiple memory accesses are required.

2.2 Texture Filtering

One of the unfortunate complexities of software virtual textures is that the texture unit,
being unaware of the actual texture pages, cannot filter across page boundaries. Instead
of using the filter hardware, it is too costly to implement texture filtering completely in a
fragment program.

In order to support hardware bi-linear filtering, each physical texture page must have a
border of texels around it. Implementations of software virtual textures are also not able
to transparently support tri-linear filtering. A straightforward way to allow for hardware
accelerated tri-linear filtering is to store one mip level for the texture with physical pages
but this comes at the expense of a 25% increase in memory footprint and an increase in
compute and bandwidth to create and upload this mip level for every physical page that is
updated. Another way to implement tri-linear filtering is to access two virtual pages during
rendering, determining the LOD fraction between them and computing the weighted average.
Even with a mip-mapped page table texture implementation, the cost of a single virtual to
physical translation carries significant overhead.

Hardware accelerated anisotropic filtering can be supported if the page border is wider
than 1 texel. For instance, a 4-texel border is used around each physical page. The 4-texel
border maps well to the 4x4 block size of a DXT compressed physical page texture and allows
for reasonable quality anisotropic filtering with the maximum anisotropy set to 4.

Ideally, the virtual texture coordinate is used to compute the anisotropic footprint and
TXD (tex2Dgrad()) is used for fetching into physical pages. This requires scaling the deriva-
tives to factor in the different scales that texture coordinates will have when they come from

13

different mip levels. The scale factor is the ratio between the size of the virtual mip level
and the size of the physical texture. When using a virtual to physical translation with one
or more mapping textures, this scale factor has to be stored separately using an additional
texture component. No additional data needs to be stored when the virtual to physical
mapping is calculated in the fragment.

Calculating and scaling the derivatives adds fragment program complexity and on most
hardware TXD is more expensive which may make this solution unattractive from a perfor-
mance standpoint. Instead, hardware accelerated anisotropy on the physical texture coordi-
nate with implicitly computed derivatives can be used. This results in erroneous footprints
for quad-fragments that cross virtual page boundaries because the physical texture space is
discontinuous at page boundaries. Texture pages that are adjacent in virtual texture space
do not necessarily map to physical pages that are next to each other, let alone close to each
other. However, even though for virtual page crossings the derivatives may become arbitrar-
ily large with an arbitrary sign, the anisotropic footprint is still bounded to a single physical
texture page because the maximum anisotropy is equal to the border width. The erroneous
footprints at page boundaries are a reasonable performance vs. quality trade-off on most
hardware. The quality is surprisingly good and the erroneous footprints are only noticeable
under significant magnification.

Normally, when fetching texture data from a mip-mapped texture the anisotropic foot-
print is sampled using texels from multiple mip levels. Even when an additional mip level is
provided for the physical texture to allow tri-linear filtering, the page table is point-sampled
using a regular texture lookup unaware of the anisotropic texture fetch that follows. As
such the anisotropic texture fetch typically ends up sampling a physical texture page from
a mip level that is too coarse to provide useful texture detail. To provide additional texture
detail for an anisotropic texture fetch, the page table lookup can be biased with the negative
base-two logarithm of the maximum anisotropy. This allows the anisotropic texture fetch
to work with additional texture detail on surfaces at an oblique angle to the viewer where
the sampled footprint is maximized (anisotropic). However, this can cause noticeable shim-
mering or aliasing on surfaces that are orthogonal to the view direction where the sampled
footprint is minimal (isotropic). To improve the quality, the bias of the page table texture
lookup can be dynamically adjusted based on the anisotropy. The calculation of the bias is
shown below.

14

const float minAnisoBias = -2; // -log2(maxAniso)

float2 dx = ddx(virtCoords.xy);

float2 dy = ddy(virtCoords.xy);

float px = dot(dx, dx);

float py = dot(dy, dy);

float maxLod = 0.5 * log2(max(px, py)); // log2(sqrt()) = 0.5*log2()

float minLod = 0.5 * log2(min(px, py));

float anisoBias = max(minLod - maxLod, minAnisoBias);

Obviously calculating the LOD bias adds computational complexity to the fragment
program. It is interesting to note however, that compared to using a constant LOD bias some
performance is gained back due to better texture cache usage. For surfaces that are mostly
orthogonal to the view direction, the dynamic LOD bias causes a mip level to be selected
where the texture samples are closer to each other. Nevertheless selecting a mip level based
on the anisotropic footprint is often unattractive from a performance standpoint because
of the additional fragment program complexity. Instead, using a maximum anisotropy of
4 and a page table texture lookup biased with a constant negative 2 typically results in a
reasonable trade between quality and performance where surfaces at an oblique angle to the
viewer are significantly sharper while minimal shimmering or aliasing appears on surfaces
orthogonal to the view direction.

2.3 Feedback Rendering

While a sparse representation makes it possible to render with a partially resident texture,
feedback is necessary for determining which parts of the texture need to be resident. Texture
feedback needs to be rendered to a separate buffer to store the virtual page coordinates
(x,y), desired mip level, and virtual texture ID (to allow multiple virtual textures). This
information is then used to pull in the texture pages needed to render the scene. The
feedback can be rendered in a separate rendering pass or to an additional render target during
an existing rendering pass. An advantage of rendering the feedback is that the feedback is
properly depth tested, so the virtual texture pipeline is not stressed with requests for texture
pages that are ultimately invisible. When a separate rendering pass is used it is fine for the
feedback to be rendered at a significantly lower resolution (say 10x smaller).

Only the texture coordinates and not the actual texture data are used in the feedback
rendering pass which means that alpha tested surfaces are considered completely opaque. To
properly pull in texture data that is visible through an alpha tested surface any such surfaces
that are not completely opaque could be rendered randomly every so many frames to the

15

feedback buffer. Similarly, when a surface uses multiple virtual texture sources, these sources
could be alternated every render frame such that over time all the necessary texture data
is pulled in. Unfortunately, this has the tendency to destabilize the virtual texture pipeline
because a different set of texture pages is requested every frame even when the scene does
not change. The pages that are requested one frame may end up replacing the pages that
were requested for the same surface the previous frame. As a result, the system may never
stabilize and pages may be continuously replaced without ever pulling in the highest detail
texture data necessary for rendering the scene.

When a surface uses multiple virtual texture sources the solution is to alternate the
different texture sources in screen space, where every other pixel of the feedback buffer pulls
texture data from a different source. When rendering from two different sources, this results
in a simple checkerboard pattern but more complex patterns can be used when rendering
from more than two sources. This approach may increase the chance of undersampling the
feedback when a surface is very small and covers very few pixels, but this turns out not to
be a problem in practice.

A similar approach can be used for alpha tested surfaces where every other pixel of the
feedback buffer covered by an alpha tested surfaces is considered either fully transparent
or fully opaque. When a simple checkerboard pattern is used to alternate between fully
transparent and fully opaque, not all the texture data may be pulled in for a scene with
multiple alpha tested surfaces stacked on top of each other. Using more complex patterns
and a different pattern per alpha tested surface can alleviate this problem. This is similar
to rendering with screen-door transparency or alpha-to-coverage.

The results of the feedback rendering pass are analyzed in a separate process. This
process could stall and wait for the feedback render but it is typically fine to use a frame
old data and incur a frame of latency. The feedback analysis walks the screen buffer and
condenses the page information into a list with unique pages. Effectively, the feedback
analysis creates the quad-tree with all the pages that need to be resident to properly render
the current scene. The analysis process sorts the pages on priority. First, the priority is set
such that the farther away the desired mip level is from the actual resident mip level, the
higher the priority. Second, the priority increases as the number of samples for a particular
page increases in the feedback buffer. The virtual texture system uses the sorted pages to
maintain residency of already resident visible pages and to first stream in the non-resident
pages that will most improve the visual quality of the currently rendered scene.

16

Chapter 3

Hardware Virtual Texturing —
Partially Resident Textures

Partially Resident Textures provide direct hardware support for the majority of all tasks
present in the virtual texturing pipeline. Application developers are no longer required to
deal with managing of the page table, address translation and/or figuring out which texture
types need to be supported. The responsibility of managing the virtual nature of a texture
is moved toward the hardware and the driver.

Partially Resident Textures are supported in all AMD Radeon HD 7xxx GPUs. The
functionality is exposed to application developers via the AMD sparse texture OpenGL ex-
tension and an upcoming DX extension (exact details are not known at the moment).

PRT support in hardware relies on 3 core components:

• HW Virtual Memory subsystem

• Page Residency information propagation

• Driver stack support for efficient mapping/unmapping

3.1 Virtual Memory

Memory addresses used to fetch texture data on Radeon 7xxx GPUs are virtual. When
a shader attempts to fetch a texel from a texture using UV coordinates, a dedicated GPU
block first computes the virtual memory address of the texel (or a block of texels if filtering is
used). The address computation depends on the texture type, format, UV coordinate values,
desired mipmap level, offset, internal texture tiling, etc. The virtual memory address is then
fed to the virtual memory subsystem. The VM subsystem performs the virtual-to-physical
address translation and then initiates a read operation from the physical memory. When the
read completes, the texel data is returned to the shader.

17

The virtual-to-physical address translation inside the VM subsystem leverages a dedi-
cated hardware page table. This is in stark contrast to software virtual texturing techniques
in which the page table is just another texture managed by the application. A dedicated
hardware page table provides several benefits when compared to a software one.

Unified format When dealing with software (texture) page tables, the application must
decide on its size, format, etc. None of this is required with hardware page tables as they
have a unified format and support all texture types, formats and sizes. The advantage of
this is that applications can use different formats for different purposes, without having to
rewrite their address encoding schemes.

The only downside of the unified format is that texture tiles might have different dimen-
sions based on what type/format they are using. In the current hardware, the page size is
fixed to 64kB, which means that a 32-bit RGBA8 texture will have tile dimensions of 128 ×
128 texels. PRT tile dimensions for uncompressed 2D textures are listed in Table 3.1.

Texture BPP PRT Tile Width PRT Tile Height
128 64 64
64 128 64
32 128 128
16 256 128
8 256 256

Figure 3.1: PRT tile dimensions for uncompressed 2D textures.

Filtering Hardware page tables provide support for all texture filtering modes. With
software page tables, certain filtering modes (e.g. trilinear or anisotropic filtering) are very
difficult to implement in a robust fashion. As discussed in the previous chapter, this is
because the physical texture coordinates are not contiguous across page boundaries. The
hardware is not aware of any page boundaries and therefore cannot filter across pages. On
the other hand, PRT-enabled hardware supports filtering across page boundaries without
issues.

Two-level structure Software page tables used in virtual texturing are traditionally only
one-level (in the virtual memory terminology, they only contain the PTEs). This impacts
their sizes and does not allow for any kind of compression. Hardware page tables can be
two-level (they contain both PDEs and PTEs), which decreases their memory footprint if
the virtual address space is only sparsely populated.

Address translation performance Sampling from a virtual texture with software page
tables amounts to a texture fetch using virtual texture coordinates followed by another
texture fetch using physical texture coordinates. Both of these require roundtrips between

18

the shader and memory, which can incur significant performance penalties should cache
trashing occur. With hardware page tables, the address translation happens as a part of
the texture fetch that uses virtual texture coordinates directly, diminishing the bandwidth
requirements by 50% in the general case.

Simplified programming When dealing with software page tables, the application at-
tempting to map/unmap a page needs to take care of the page table updates. Hardware page
tables are programmed by the SW driver stack when the client application commits/clears
individual texture tiles. The application is only required to specify which parts of the texture
should be resident for the upcoming commands.

Caching efficiency Hardware page tables can take advantage of special HW caches to
speed up lookups and the virtual-to-physical address translation. This is not possible with
software page tables, as they go down the traditional texture fetch hardware path.

Consider the following fragment shader that performs sampling using a software (texture)
page table:

uniform sampler2D samplerPageTable; // page table

uniform sampler2D samplerPhysTexture; // physical texture

in vec4 virtUV; // virtual texture coordinates

out vec4 color; // output color

vec2 getPhysUV(vec4 pte); // translation function

void main()

{

vec4 pte = texture(samplerPageTable, virtUV.xy); // 1

vec2 physUV = getPhysUV(pte); // 2

color = texture(samplerPhysTexture, physUV.xy); // 3

}

Figure 3.2 illustrates what happens inside the hardware during software-based virtual-
to-physical address translation operation. In the first texture fetch invocation (line 1), the
virtual texture coordinates are used to look up the PTE (page table entry). The PTE is an
application-specific data structure stored in the page table texture. In the next step (line
2), the PTE is converted to physical texture coordinates, again by an application-specific
function that deals with the encoding scheme, filtering, formats, etc. Finally (line 3), the
physical texture coordinates are used to fetch the texture data.

From the hardware’s point of view, both texture fetches (lines 1 and 3) are pretty much
identical except that they are accessing different textures. One important detail to notice

19

is that both texture fetches are dependent, i.e. the second one cannot be launched before
the first one completes. Dependent texture fetches are generally not a good approach when
high-performance is desirable.

vec4 pte = texture(samplerPageTable, virtUV.xy);
vec2 physUV = texture(samplerPageTable, virtUV.xy).xy;

Texture Block

Memory
Controller

virtUV

memory
address

physical
address

Physical Memory

texture
data

texture
data

texture
data

color = texture(samplerPhysTexture, physUV.xy);
vec4 color = texture(samplerPhysTexture, physUV.xy);

Texture Block

Memory
Controller

physUV

memory
address

physical
address

Physical Memory

texture
data

texture
data

texture
data

Figure 3.2: Virtual-to-physical address translation using a software (texture) page table and
two dependent texture fetches.

20

Now consider a different fragment shader that takes advantage of a PRT-enabled texture
fetch (the sparseTexture() texture sampling instruction is the new instruction introduced in
the AMD sparse texture OpenGL extension — details in Chapter 4):

uniform sampler2D samplerVirtTexture;

in vec4 virtUV; // virtual texture coordinates

out vec4 color; // output color

void main()

{

// sparse texture fetch

int code = sparseTexture(samplerVirtTexture, virtUV.xy, color);

}

The shader no longer uses two dependent texture fetches, but instead, the virtual-to-
physical address translation is performed directly in hardware based on the virtual texture
coordinates passed to the sampling function. The hardware function is depicted in Figure 3.3.

int code = sparseTexture(samplerVirtTexture, virtUV.xy, color);int code = textureSparse(samplerVirtTexture, virtUV.xy, color);

Texture Block

Memory
Controller

virtUV

virtual
address

physical
address

Physical Memory

texture
data

texture
data

texture
data

x
x

x

x
x
x
x
x

Page Table

…

virtual
address

physical
address

Figure 3.3: Virtual-to-physical address translation using a hardware page table.

21

3.2 Page/Tile Residency Information

The previous section introduced the concept of hardware page tables and discussed their
advantages in the context of fetching data from pages that we know are resident in GPU
memory. However, a completely different class of algorithms can be based on the idea of
determining page residency information at runtime.

Page fault is a virtual memory event that occurs when the client attempts to translate a
virtual address that does not have an entry in the page table (i.e. the page is not mapped
to any physical address). In virtual texturing systems, it is very convenient when a shader
is able to determine page residency status in an efficient manner.

Querying page residency status from software page tables is straightforward — the shader
performs a texture fetch from the page table texture (as in Figure 3.2) and then tests the
resulting address for validity (an application specific value can be stored in the page table
to indicate unmapped access). The cost of the texture fetch is equal to the cost of any other
texture fetch.

With PRTs, the hardware directly supports propagating of the page residency information
from the page table to the shader core. In other words, if the shader attempts to read from
an unmapped virtual address, the hardware will report failure without having to perform a
read from the texture memory. The return code is referred to as a NACK in the rest of this
document. The sequence of events is illustrated in Figure 3.4.

int code = sparseTexture(samplerVirtTexture, virtUV.xy, color);int code = textureSparse(samplerVirtTexture, virtUV.xy, color);

Texture Block

Memory
Controller

virtUV

virtual
address

Physical Memory

NACK

NACK

x
x

x

x
x
x
x
x

Page Table

…

virtual
address

NACK

Figure 3.4: NACK propagation.

22

Chapter 4

PRT Use Cases & Future
Development

In the first part of this chapter, we cover some use cases of PRTs in the real world and
demonstrate techniques that may be implemented using the PRT feature. Use cases are
enumerated below. In a second part of this chapter, we address some current limitations of
the approach implemented in AMD’s hardware, and some thoughts on future directions.

4.1 Very Large Texture Arrays

First, we discuss the use of very large texture arrays as an application managed cache of
textures that may be used to virtually eliminate texture binds in a real-time application.
Under this scheme, one, very large texture array is allocated for each class of texture (say,
diffuse albedo, specular coefficients, normal maps, etc.). These array textures are bound and
left bound for the lifetime of the application. Each material in a scene is assigned a slice of
the array. On current hardware, we are able to support more than 8,000 slices in a single
texture array, allowing more than 8,000 unique materials to be represented in a single array.
Of course, a moderate sized array texture (of the order of 2K × 2K texels) with 8,000 slices
consumes more than 10s of gigabytes of address space and so it is impossible to ensure that
all of the texture data is resident at all times.

However, assuming that the live data set for a single rendering call can be made resident
(i.e., it fits in GPU memory), several advantages arise from using texture arrays with sparse
textures. The first of these is that the layout of textures in memory is consistent between
materials. All materials have access to their diffuse albedo, specular coefficient and normal
map textures if they have them. For those materials that do not have some of those com-
ponents, then those slices of the array may be left non-resident without consuming precious
physical memory — only virtual memory is reserved. This simplifies shader development as
it allows texture layout to be declared boiler-plate style.

23

The second, and perhaps more important aspect to this approach is that the texture
array can be considered an application-controlled cache. When a material is about to be
rendered, the application must ensure that the relevant slices of the appropriate texture
arrays are present in GPU memory. However, there is no need to bind new textures as all of
the texture data is actually part of the same set of array textures. As materials are rendered,
new slices of the array are uploaded to the GPU as needed and then left resident. If the same
slice is needed again, then it is already resident and no texture upload or rebind operation is
necessary. If, during texture upload, an out-of-memory error is detected, slices that are no
longer needed may be discarded and a new attempt to make pages resident made. If, during
the rendering of a single frame, all textures needed fit into GPU memory, then nothing is
discarded, everything remains resident and no paging is necessary on the next frame. Thus,
the subsequent frame may be rendered with no texture binds at all.

Once the need for binding textures between draw commands is eliminated, several com-
mon optimizations found in modern realtime graphics engines become redundant. For ex-
ample, engines often sort or bin geometry in order to reduce state changes. As a change
in texture is no longer considered a state change, this sorting becomes less important. As
another example, large, complex models consisting of surfaces with many materials are often
broken into several smaller parts for rendering. As all of the texture data for these parts
can now be made resident simultaneously, this can be avoided by simply attaching a per-
chunk material ID to what would previously have been separate drawing commands. Other
graphics features such as instancing become more applicable here.

4.2 Incomplete Mip-map Chains

A second technique that becomes possible with sparse textures is the use of incomplete mip-
map chains. These may be used for procedurally generated textures or streaming texture data
from networks, optical drives or other slow media. Under such circumstances, a minimum
level of detail is made resident before scene rendering begins. This level can be chosen by
the developer, but due to artifacts of the PRT implementation, is likely to be a minimum
of 64KB per texture. This data may, perhaps, be kept closer to the engine in the form of a
decompressed base-level texture set, or a set of texture data that is downloaded first. During
rendering, a record is made of which textures are actually necessary during scene traversal.
This could be done on the CPU based on some simple CPU-based rendering, through GPU
assisted techniques such as occlusion queries, or entirely on the GPU by writing texture
access data into images in GPU memory. The application then periodically examines the
list of live textures and brings them into GPU memory on demand.

On the shader side, an attempt is made to fetch the textures that are required to render
the scene. If the necessary textures are not resident in GPU memory, a signal is returned
to the shader to indicate so, and the shader begins traversing the mip-map pyramid until a
resident texel is found. Because the application made all of the lowest resolution mip-map
levels resident during initialization, it is guaranteed that some reasonable texture data is

24

found during this pyramid walk. Over the next few frames, texture data becomes resident –
either by loading it from the slow resource, or by generating it on the fly using the CPU or
even the GPU itself. Non-resident textures are displayed as blurry, downsampled versions
of their higher resolution counterparts at first, and over the course of one or more frames,
become sharper. Because no physical address space is required for non-resident texture data,
the largest resolution layer of the mip-map pyramid need not even exist if it is known a-priori
that it will never be accessed by the texture. The same algorithm follows, though; traverse
the mip-map pyramid, starting from the desired LoD until a resident texel is found.

4.3 Truly Sparse Textures

Truly sparse textures are another excellent use case for PRT. For example, consider a tra-
ditional texture atlas. In general, tools must find a balance between tightly packing atlas
components in order to conserve empty space, and leaving enough space between those com-
ponents to avoid bleeding during the generation of the mip-map chain. With PRT, this is
not as necessary. Large regions of unused space may be left empty between components of
a texture atlas. Any 64KB chunk of texture can be ignored as it will not be allocated in
physical storage. Large, irregular shapes may be created in the atlas without worrying about
filling the voids in the convex or even hollow outlines. Sparsity is even more relevant in 3D
and volumetric data-sets. A 3D scan of a large volume can often consume many gigabytes
of storage, but contain large homogeneous regions and even voids. By using a PRT to store
these types of texture, larger volumes that would previously have been impossible to ren-
der without complex shader driven page tables may be simply treated as large contiguous
textures. Those regions that are completely empty may be left entirely un-allocated. For
those regions where lower frequency or even single-valued data is acceptable, the very lowest
level of the 3D mip-map pyramid may be used. Use in ray-marching or slice-based rendering
algorithms of these apparently complete data sets is then trivial.

4.4 Current Limitations and Thoughts on the Future

The PRT feature we are shipping in hardware is certainly very powerful, but does not address
all the wants or needs of the current SVT community. In particular, the maximum texture
size has not changed - it is 16K × 16K × 8K texels. The limit lies in the precision of
the representation of texture coordinates with enough sub-texel resolution for artifact-free
linear sampling. To some degree, this may be easy to lift, but we are seeing requests from
developers to go as high as 1M × 1M or more in a single texture. This presents significant
architectural challenges and may or may not be feasible in the near term.

It is also easy to see that with large textures and high precision texel formats, we start to
exhaust even the virtual address space of the GPU. The largest possible texture is 16K × 16K
× 8K × 16 bytes per texel. This amounts to 32 terabytes of linear address space. This far
exceeds the addressable space available to the GPU, irrespective or residency. Furthermore,

25

as it is backed by the virtual memory subsystem, page table entries need to be allocated for
those pages referenced by sparse textures. The approximate overhead of the page tables for
a virtual allocation on current-generation hardware is 0.02% of the virtual allocation size.
This does not seem like much and for traditional uses of virtual memory, it is not. However,
when we consider ideas such as allocation of a single texture which consumes a terabyte of
virtual address space, this overhead is 20GB — much larger than will fit into the GPU’s
physical memory. To address this, we need to consider approaches such as non-resident page
tables and page table compression.

There are several use cases for PRT that seem reasonable but that come with subtle
complexities that prevent their clean implementation. One such complexity is in the use of
PRTs as renderable surfaces. Currently, we support rendering to PRTs as color surfaces.
Writes to un-mapped regions of the surface are simply dropped. However, supporting PRTs
as depth or stencil buffers becomes complex. For example, what is the expected behavior
of performing depth or stencil testing against a non-resident portion of the depth or stencil
buffer? Also, supporting rendering to MSAA surfaces is not well supported. Because of
the way compression works for multisampled surfaces, it is possible for a single pixel in a
color surface to be both resident and non-resident simultaneously, depending on how many
edges cut that pixel. For this reason, we do not expose depth, stencil or MSAA surfaces as
renderable on current generation hardware.

The operating system is another component in the virtual memory subsystem which must
be considered. Under our current architecture, a single virtual allocation may be backed
by multiple physical allocations. Our driver stack is responsible for virtual address space
allocations whereas the operating system is responsible for the allocation of physical address
space. The driver informs the operating system how much physical memory is available and
the operating system creates allocations from these pools. During rendering, the operating
system can ask the driver to page physical allocations in and out of the GPU memory. The
driver does this using DMA and updates the page tables to keep GPU virtual addresses
pointing at the right place. During rendering, the driver tells the operating system which
allocations are referenced by the application at any given point in the submission stream and
the operating system responds by issuing paging requests to make sure they are resident.
When there is a 1-to-1 (or even a many-to-1) correspondence between virtual and physical
allocations, this works well. However, when a large texture is slowly made resident over time,
the list of physical allocations referenced by a single large virtual allocation can become very
long. This presents some performance challenges that real-world use will likely show us in
the near term and will need to be addressed.

26

Appendix A

Code Samples

To query PRT tile dimensions for a give texture format/type:

GLint sizeX = 0;

GLint sizeY = 0;

GLint sizeZ = 0;

glGetInternalformativ(GL_TEXTURE_2D, GL_RGBA8, GL_VIRTUAL_PAGE_SIZE_X_AMD, 1, &sizeX);

glGetInternalformativ(GL_TEXTURE_2D, GL_RGBA8, GL_VIRTUAL_PAGE_SIZE_Y_AMD, 1, &sizeY);

glGetInternalformativ(GL_TEXTURE_2D, GL_RGBA8, GL_VIRTUAL_PAGE_SIZE_Z_AMD, 1, &sizeZ);

To create a 2D partially resident texture with 5 × 10 tiles:

GLuint prtTexture = 0;

glGenTextures(1, &prtTexture);

glBindMultiTexture(GL_TEXTURE0, GL_TEXTURE_2D, prtTexture);

glTexStorageSparseAMD(GL_TEXTURE_2D, GL_RGBA8, sizeX * 5, sizeY * 10, 1, 0,

GL_TEXTURE_STORAGE_SPARSE_BIT_AMD);

To map a 2 × 1 PRT region at offset (0, 0) in mipmap level 0:

glBindMultiTexture(GL_TEXTURE0, GL_TEXTURE_2D, prtTexture);

glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, sizeX * 2, sizeY * 1,

GL_RGBA, GL_UNSIGNED_BYTE, data);

27

To unmap the same PRT region:

glBindMultiTexture(GL_TEXTURE0, GL_TEXTURE_2D, prtTexture);

glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, sizeX * 2, sizeY * 1,

GL_RGBA, GL_UNSIGNED_BYTE, NULL);

To check for tile residency inside a fragment shader:

uniform sampler2D sampler;

in vec4 colorVert;

in vec4 texCoordVert;

out vec4 fragmentColor;

void main()

{

vec4 outColor = vec4(1.0, 1.0, 1.0, 1.0);

int code = sparseTexture(sampler, texCoordVert.xy, outColor);

if (sparseTexelResident(code))

{

// data present

fragmentColor = vec4(outColor.rgb, 1.0);

}

else

{

// NACK

fragmentColor = vec4(1.0, 0.0, 0.0, 1.0);

}

}

28

